What can large-scale magnetohydrodynamic numerical experiments tell us about coronal heating?
نویسنده
چکیده
The upper atmosphere of the Sun is governed by the complex structure of the magnetic field. This controls the heating of the coronal plasma to over a million kelvin. Numerical experiments in the form of three-dimensional magnetohydrodynamic simulations are used to investigate the intimate interaction between magnetic field and plasma. These models allow one to synthesize the coronal emission just as it would be observed by real solar instrumentation. Large-scale models encompassing a whole active region form evolving coronal loops with properties similar to those seen in extreme ultraviolet light from the Sun, and reproduce a number of average observed quantities. This suggests that the spatial and temporal distributions of the heating as well as the energy distribution of individual heat deposition events in the model are a good representation of the real Sun. This provides evidence that the braiding of fieldlines through magneto-convective motions in the photosphere is a good concept to heat the upper atmosphere of the Sun.
منابع مشابه
What can observations tell us about coronal heating?
The actual source of coronal heating is one of the longest standing unsolved mysteries in all of astrophysics, but it is only in recent years that observations have begun making significant contributions. Coronal loops, their structure and sub-structure, their temperature and density details, and their evolution with time, may hold the key to solving this mystery. Because spatial resolution of ...
متن کاملKey aspects of coronal heating
We highlight 10 key aspects of coronal heating that must be understood before we can consider the problem to be solved. (1) All coronal heating is impulsive. (2) The details of coronal heating matter. (3) The corona is filled with elemental magnetic stands. (4) The corona is densely populated with current sheets. (5) The strands must reconnect to prevent an infinite build-up of stress. (6) Nano...
متن کاملAnalytic and Numerical Studies of a Tectonics Model for Solar Coronal Heating
Analytic and Numerical Studies of a Tectonics Model for Solar Coronal Heating Chung-Sang Ng1, A. Bhattacharjee1 1University of New Hampshire. Presentation Number: 14.04 Recent observations have shown that the solar surface is covered with a so-called “magnetic carpet”, in which small-scale magnetic flux loops are continually emerging and interacting. The magnetic flux at the photosphere is thus...
متن کاملTurbulent coronal heating and the distribution of nanoflares
We perform direct numerical simulations of an externally driven twodimensional magnetohydrodynamic system over extended periods of time to simulate the dynamics of a transverse section of a solar coronal loop. A stationary and large-scale magnetic forcing was imposed, to model the photospheric motions at the magnetic loop footpoints. A turbulent stationary regime is reached, which corresponds t...
متن کاملCosmic Structure Formation and Dynamics: Magnetohydrodynamic Simulations of Coronal Heating
By implementing a three-dimensional magnetohydrodynamic (MHD) code based on the CIP-MOCCT scheme, we carried out large scale MHD simulations of the solar atmosphere covering the region from the convection zone to the corona. We found that in regions with weak magnetic fields (B~100G), horizontal magnetic loops created in the upflow regions of the convection generate high frequency waves by reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 373 2042 شماره
صفحات -
تاریخ انتشار 2015